

MaterialX: An Open Standard for
Network-Based CG Object Looks

Doug Smythe - smythe@ilm.com

Jonathan Stone - jstone@lucasfilm.com
March 22, 2017

Introduction

Statement of Problem

Many Computer Graphics production studios use workflows involving multiple software tools for
different parts of the production pipeline. There is also a significant amount of sharing and outsourcing
of work across multiple facilities, requiring companies to hand off fully look-developed models to other
divisions or studios which may use different software packages and rendering systems. In addition,
studio rendering pipelines that previously used monolithic shaders built by expert programmers or
technical directors with fixed, predetermined texture-to-shader connections and hard-coded texture
color-correction options are moving toward more flexible node graph-based shader networks built up by
connecting input texture images and procedural texture generators to various inputs of shaders through a
tree of image processing and blending operators.

There are at least four distinct interrelated data relationships needed to specify the complete "look" of a
CG object:

1. Define the texture processing networks of image sources, image processing operators,
connections and parameters used to combine and process one or more sources (e.g. textures) to
produce the texture images that will eventually be connected to various shader inputs (e.g.
"diffuse_albedo" or "bumpmap").

2. Define geometry-specific information such as associated texture filenames or IDs for various
map types.

3. Define the parameter values and connections to texture processing networks for the inputs of one
or more rendering or post-render blending shaders, resulting in a number of materials.

4. Define the associations between geometries in a model and materials to create number of looks
for the model.

At the moment, there is no common, open standard for transferring all of the above data relationships.
Various applications have their own file formats to store this information, but these are either closed,
proprietary, inadequately documented or implemented in such a way that using them involves opening
or replicating a full application.

Thus, there is a need for an open, platform-independent, well-defined standard for specifying the "look"
of computer graphics objects built using shader networks so that these looks or sub-components of a
look can be passed from one software package to another or between different facilities.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 1

mailto:smythe@ilm.com
mailto:jstone@lucasfilm.com

The purpose of this proposal is to define a schema for Computer Graphics material looks with exact
operator and connection behavior for all data components, and a standalone file format for reading and
writing material content using this schema. The proposal will not attempt to impose any particular
shading models or any interpretation of images or data.

This proposal is not intended to represent any particular workflow or dictate data representations that a
tool must support, but rather to define a flexible interchange standard compatible with many different
possible ways of working. A particular tool might not support multi-layer images or even shader
networks, but it could still write out looks and materials in the proposed format for interchange and read
them back in.

Requirements

The following are requirements that the proposed standard must satisfy:

● The material schema and file format must be open and well-defined.
● Texture processing operations and their behavior must be well-defined.
● Data flow and connections must be robust and unambiguous.
● The specification must be extensible, and robustly define the processing behavior when an

operator type, input or parameter is encountered that is not understood by an implementation.

The following are desirable features that would make a proposed file format easier to use, implement,
and integrate into existing workflows:

● The material schema should be both expressible as a standalone file format and embeddable
within file formats that support embedded material data, such as OpenEXR and Alembic.

● The file format should consist of human-readable, editable text files based upon open
international standards.

● It should be possible to store parameter values and input/output filenames within material
content, but it should also be possible to expose certain parameters as externally-accessible
"knobs" for users to edit and/or allow external applications to read the file and supply their own
values for files or parameters so that the file can be used as a template or in different contexts.

● Color computations should support modern color management systems, and it should be possible
to specify the precise color space for any input image or color value, as well as the working color
space for computations.

● Data types of all inputs and outputs should be explicitly specified rather than inferred in order to
enable type checking upon file read rather than requiring additional information from external
files or the host application to resolve ambiguous or undefined data types.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 2

Table of Contents
Introduction 1

Statement of Problem 1
Requirements 2

Proposal 5
MaterialX Overview Diagram 5
Definitions 7
MaterialX Names 8
MaterialX Data Types 8
Custom Data Types 10
MTLX File Format Definition 12
Implementation Compatibility Checking 13
Color Spaces and Color Management Systems 14
MaterialX Namespaces 15
Geometry Representation 16
Geometry and File Prefixes 16
Public Names 18
Image Filename Substitutions 18
Geometry Name Wildcards 19
Parameter Expressions and Function Curves 20
Custom Attributes, Parameters and Inputs 20

Nodes and Node Graphs 22
NodeGraph Definition 22

Inputs and Parameters 23
Output Elements 24

Standard Source Nodes 25
Texture Nodes 25
Procedural Nodes 27
Global Nodes 29
Geometric Nodes 30
Application Nodes 31

Standard Operator Nodes 32
Math Nodes 32
Adjustment Nodes 35
Compositing Nodes 36
Conditional Nodes 38
Channel Nodes 39
Convolution Nodes 40

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 3

Organization Nodes 41
Standard Node Parameters 41
Standard UI Attributes 42
NodeGraph Examples 43
Custom Nodes 48

Custom Node Declaration 48
Custom Node Definition 49
Custom Node Use 52

Shader Nodes 53

Materials 55
Material Elements 55

MaterialInherit Elements 55
MaterialVar Elements 55
ShaderRef Elements 56
BindParam Elements 57
BindInput Elements 57
Override Elements 58

Material Examples 59

Lights 65

Collections 66
Collection Definition 66

CollectionAdd Elements 66
CollectionRemove Elements 67

Geometry Info Elements 68
GeomInfo Definition 68

GeomAttr Elements 68
GeomAttrDefault Elements 70
Reserved GeomAttr Names 70

Look and Property Elements 71
Property Definition 71
Look Definition 72
Look Assignment Elements 72

MaterialAssign Elements 72
LightAssign Elements 73
PropertyAssign Elements 73

Look Examples 74

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 4

Proposal

We propose a new material content schema, MaterialX, along with a corresponding XML-based file
format to read and write MaterialX content. The MaterialX schema defines several primary element
types plus a number of supplemental and sub-element types. The primary element types are:

● <nodegraph> for defining graphs of data-processing nodes
● <material> for defining shader instances with bindings to specific uniform parameter values and

spatially-varying input data streams
● <geominfo> for defining uniform geometric attributes that may be referenced from node graphs
● <look> for defining object looks, which bind materials and properties to specific geometries

An MTLX file is a standard XML file that represents a MaterialX document, with XML elements and
attributes used to represent the corresponding MaterialX elements and attributes. MTLX files may be
fully self-contained, or split across several files to encourage sharing and reuse of components.

MaterialX Overview Diagram

The diagram on the following page gives a high-level overview of what each element defines and how
the elements connect together to form a complete set of look definitions. Details of the <nodegraph>,
<geominfo>, <material>, <look> and other elements are described in the sections that follow.

Flow of information generally proceeds counterclockwise through the diagram. The green "GeomAttrs"
box shows how named attributes can be associated with geometries. The red "NodeGraphs" box defines
a number of texture processing networks, which generally determine which input texture images to read
by substituting GeomAttr strings defined for each geometry into a specified portion of the image file
name. Rendering materials referencing one or more shaders and assigning values and input bindings to
them are illustrated in the blue "Materials" box. These materials are then assigned to specified
geometries via MaterialAssigns ("MA" in the diagram) as shown in the violet "Looks" box.

The example diagram defines two looks: L1 and L2. L1 uses material M1 (assigned to geometry /a/g1
through /a/g6), while L2 uses materials M1 (assigned to /a/g1, /a/g2 and /a/g3) and M2 (assigned to
/a/g4, /a/g5 and /a/g6). Both materials reference the "basic_srf" shader, but M2 also references the
"bump_dsp" shader. Each of the materials bind shader input connections to named outputs from
nodegraphs N1, N2 and N3, but set different overriding values for the public node parameters "altmix"
and (for M2) "bumpmult" as well as different value bindings for the basic_srf "roughness" parameter.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 5

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 6

Definitions

Because the same word can be used to mean slightly different things in different contexts, and because
each studio and package has its own vocabulary, it's important to define exactly what we mean by any
particular term in this proposal and use each term consistently.

An Element is a named object within a MaterialX document, which may possess any number of child
elements and attributes. An Attribute is a named property of a MaterialX element.

A Node is a computer program that generates or processes spatially-varying data. This specification
provides a set of standard nodes with precise definitions, and also supports the creation of custom nodes
for application-specific uses. The interface for a node’s incoming data is declared through Parameters,
which can hold only uniform values, and Inputs, which may be spatially-varying.

A Pattern is a node that generates or processes simple scalar, vector, and color data, and has access to
local properties of any geometry that has been bound. A Shader is a node that can generate or process
arbitrary lighting or BxDF data, and has access to global properties of the scene in which it is evaluated.

A Node Graph is a directed acyclic graph of nodes, which may be used to define arbitrarily complex
generation or processing networks. Common uses of Node Graphs are to describe the network of
pattern nodes flowing to a shader input, or to define a complex or layered node in terms of simpler
nodes.

A Material is a container for shader references, with capabilities for binding constant and
spatially-varying data to the shader parameters and inputs, and for overriding the values of public
parameters defined by the shaders or connected nodes.

A Public Parameter or Public Input is a parameter or input of a node tagged with a "publicname"
attribute, allowing a material to override it with a new value.

A Stream refers to a flow of spatially-varying data from one node to another. A Stream most
commonly consists of color, vector, or scalar data, but can transport data of any standard or custom type

A Layer is a named 1-, 2-, 3- or 4-channel color "plane" within an image file. Image file formats that do
not support multiple and/or named layers within a file should be treated as if the (single) layer was
named "rgba".

A Channel is a single float value within a color or vector value, e.g. each layer of an image might have
a red Channel, a green Channel, a blue Channel and an alpha Channel.

A Geometry is any renderable object, while a Partition refers to a specific named renderable subset of
a piece of geometry, such as a face set.

A Collection is a recipe for building a list of geometries, which can be used as a shorthand for assigning
a Material to a number of geometries in a Look.

A Target is a software environment that interprets MaterialX content to generate images, with common

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 7

examples being digital content creation tools and 3D renderers.

MaterialX Names

All elements in MaterialX (nodegraphs, nodes, materials, shaders, etc.) are required to have a name
attribute of type "string". The name attribute of a MaterialX element is its unique identifier, and no two
elements within the same scope (i.e. elements with the same parent) may share a name. Some element
types (e.g. <shaderref> and <materialassign>) serve the role of referencing an element at a different
scope, and in this situation the referencing element will share a name with the element it references.

Element names are restricted to upper- and lower-case letters, numbers, and underscores (“_”) from the
ASCII character set; all other characters and symbols are disallowed.

MaterialX Data Types

All values, input and output ports, and streams in MaterialX are strongly typed, and are explicitly
associated with a specific data type. The following standard data types are defined by MaterialX:

Base Types:
 integer, boolean, float, color2, color3, color4, vector2, vector3, vector4,
 matrix, string, filename, geomname
Array Types:
 integerarray, floatarray, color2array, color3array, color4array,
 vector2array, vector3array, vector4array, stringarray, geomnamearray

The following examples show the appropriate syntax for MaterialX attributes in MTLX files:

Integer, Float: just a value inside quotes
 integervalue = "1"
 floatvalue = "1.0"

Boolean: the lower-case word "true" or "false" inside quotes
 booleanvalue = "true"

Color types: MaterialX supports three different color types:

● color2 (red, alpha)
● color3 (red, green, blue)
● color4 (red, green, blue, alpha)

Color channel values should be separated by commas (with or without whitespace), within quotes:
 color2value = "0.1,1.0"
 color3value = "0.1,0.2,0.3"
 color4value = "0.1,0.2,0.3,1.0"
Note: all color3 values and the RGB components of a color4 value are presumed to be specified in the
"working color space" defined in the <materialx> element, and any place in a MaterialX file that a value
of type color3 or color4 is allowed, a colorspace attribute can also be specified to define the color
space that the value is specified in; implementations are expected to translate those color values into the

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 8

working color space before performing computations with those values.

Vector types: similar to colors, MaterialX supports three different vector types:

● vector2 (x, y)
● vector3 (x, y, z)
● vector4 (x, y, z, w)

Coordinate values should be separated by commas (with or without whitespace), within quotes:
 vector2value = "0.234,0.885"
 vector3value = "-0.13,12.883,91.7"
 vector4value = "-0.13,12.883,91.7,1.0"

While colorN and vectorN types both describe vectors of floating-point values, they differ in a number
of significant ways. First, the final channel of a color2 or color4 value is interpreted as an alpha channel
by compositing operators, and is only meaningful within the [0, 1] range, while the fourth channel of a
vector4 value could be (but is not necessarily) interpreted as the "w" value of a homogeneous 3D vector.
Additionally, channel operators may apply different rules to colors than to vectors, e.g. a conversion
from a color2 to a color4 replicates the red channel to each component of the RGB triple, but leaves the
alpha channel alone. Finally, values of type color3 and color4 are always associated with a particular
color space and are affected by color transformations, while values of type vector3 and vector4 are not.
More detailed rules for colorN and vectorN operations may be found in the Standard Operators section
of the specification.

Matrix: sixteen float values separated by commas (with or without whitespace), within double quotes.
Matrices in MaterialX are intended to be 3D transformation matrices and are thus always exactly 4x4 in
size, specified in row-major order:
 matrixvalue = "1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1"

String: text within double-quotes; a single backslash (\) can be used as an escape character to allow
inserting a double-quote or a backslash within the string (or to escape a comma within a string in a
stringarray):
 stringvalue = "some text"

Filename: attributes of type "filename" are just strings within double-quotes, but specifically mean a
Uniform Resource Identifier (https://en.wikipedia.org/wiki/Uniform_Resource_Identifier) that
represents a reference to an external asset, such as a file on disk or a query into a content management
system, with image filename string substitution being performed on the string before the URI reference
is resolved. For maximum portability between applications, regular filenames relative to a current
working directory are generally preferred, especially for 

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 14

http://opencolorio.org/
http://www.oscars.org/science-technology/sci-tech-projects/aces

MaterialX reserves the color space name "none" to mean no color space conversion should be applied to
the images and color values within their scope.

MaterialX Namespaces

MaterialX supports the specifying of “namespaces”, which qualify the MaterialX names of all elements
within their scope. Namespaces are specified via a namespace attribute in the root <materialx>
element, and other MaterialX files which <xi:include> this .mtlx file can refer to its content without
worrying about element or object naming conflicts, similar to the way namespaces are used in various
programming languages. MaterialX namespaces are most commonly used to define families of custom
nodes (nodedefs), material libraries, or commonly-used network shaders or nodegraphs.

Elements defined within namespaces are externally referenced using "namespace:elementname", where
namespace is the value of the namespace attribute in the included .mtlx file's <materialx> element, and
elementname is the name of the element in that file to reference.

Example:
Mtllib.mtlx contains the following (assuming that "..." contains necessary <shaderref> and other element
definitions):
 <?xml version="1.0" encoding="UTF-8"?>
 <materialx version="major.minor" namespace="stdmaterials">
 ...
 <material name="wood">
 ...
 </material>
 <material name="plastic">
 ...
 </material>
 </materialx>

Then another MaterialX file could reference these materials like this:
 <xi:include href="mtllib.mtlx"/>
 ...
 <look name="hero">
 <materialassign name="stdmaterials:wood" collection="C_wood">
 <materialassign name="stdmaterials:plastic" collection="C_plastic">
 </look>

Similarly, if a .mtlx file defining the "site_ops" namespace defined a custom color3-typed node
"mynoise" with a single float parameter "f", it could be used in an nodegraph like this:
 <site_ops:mynoise name="mn1" type="color3">
 <parameter name="f" type="float" value="0.3"/>
 </site_ops:mynoise>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 15

Geometry Representation

Geometry is referenced by but not specifically defined within MaterialX content. The file in which
geometry is defined can optionally be declared using geomfile attributes within any element; that
geomfile declaration will then apply to any geometry name referenced within the scope of that
element, e.g. any geom attributes, including those defining the contents of collections (but not when
referencing the contents of a collection via a collection attribute). If a geomfile is not defined for
the scope of any particular geom attribute, it is presumed that the host application can resolve the
location of the geometry definition.

The geometry naming conventions used in the MaterialX specification are designed to be compatible
with those used in Alembic (http://www.alembic.io/). "Geometry" can be any particular geometric
object that a host application may support, including but not limited to polygons, meshes, subdivision
surfaces, NURBS patches or meshes, implicit surfaces, particle sets, volumes, procedurally-defined
objects, etc. The only requirements for MaterialX are that geometries are named using the convention
specified below, can be assigned to a material and can be rendered.

The naming of geometry should follow a syntax similar to UNIX full paths:

 /string1/string2/string3/...

E.g. an initial "/" followed by one or more hierarchy level strings separated by "/"s, ending with a final
string and no "/". The strings making up the path component for a level of hierarchy cannot contain
spaces or "/"s or any of the characters reserved for geometry name wildcards (see below). Individual
implementations may have further restrictions on what characters may be used for hierarchy level
names, so for ultimate compatibility it is recommended to use names comprised only of upper- or
lower-case letters, digits 0-9, and underscores ("_").

Geometry names (e.g. the full path name) must be unique within the entire set of geometries referenced
in a setup. Note that there is no implied transformation hierarchy in the specified geometry paths: the
paths are simply the names of the geometry. However, the path-like nature of geometry names can be
used to benefit in wildcard pattern matching.

Note: if a geometry mesh is divided into partitions, the syntax for the parent mesh would be:

 /path/to/geom/meshname

and for the child partitions, the syntax would be:

 /path/to/geom/meshname/partitionname

Geometry and File Prefixes

As a shorthand convenience, MaterialX allows the specification of a geomprefix attribute that will be
prepended to data values of type "geomname" or "geomnamearray" (e.g. geom attributes in
<geominfo> , <collectionadd> , <collectionremove> , <light> , <materialassign> , and

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 16

http://www.alembic.io/

<lightassign> elements) specified within the scope of the element defining the geomprefix . For
data values of type "geomnamearray", the geomprefix is prepended to each individual
comma-separated geometry name. Since the values of the prefix and the geometry are
string-concatenated, the value of a geomprefix should generally end with a "/". Geomprefix is
commonly used to split off leading portions of geometry paths common to all geometry names, perhaps
including package-specific conventions or an asset name.

So the following MTLX file snippets are all equivalent:

 <materialx>
 <collection name="c_plastic">
 <collectionadd geom="/a/b/g1,/a/b/g2,/a/b/g5,/a/b/c/d/g6"/>
 </collection>
 </materialx>

 <materialx>
 <collection name="c_plastic" geomprefix="/a/b/">
 <collectionadd geom="g1,g2,g5,c/d/g6"/>
 </collection>
 </materialx>

 <materialx geomprefix="/a/b/">
 <collection name="c_plastic">
 <collectionadd geom="g1,g2,g5"/>
 <collectionadd geom="c/d/g6"/>
 </collection>
 </materialx>

MaterialX also allows the specification of a fileprefix attribute whose value will be prepended to
data values of type "filename" (e.g. file parameters in 
 <image name="in2" type="color3">
 <parameter name="file" type="filename" value="textures/color2/color2.tif"/>
 </image>
 </nodegraph>
 </materialx>

 <materialx>
 <nodegraph name="nodegraph1" fileprefix="textures/color/">
 <image name="in1" type="color3">
 <parameter name="file" type="filename" value="color1.tif"/>
 </image>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 17

 <image name="in2" type="color3">
 <parameter name="file" type="filename" fileprefix="textures/"
 value="color2/color2.tif"/>
 </image>
 </nodegraph>
 </materialx>

Note in the second example that 

In the above example, Maya-specific parameters "filterType" and "preFilter" have been added to an
image node. The Maya implementation would then be responsible for passing these parameters on to
whatever renderer may need them.

Applications may also add custom inputs to any of the standard source and operator nodes described in
this specification. Just like standard inputs, these custom inputs can be assigned a value or be connected
to another node's output, and can be given a default value to be used if unconnected. If a particular
implementation does not understand a custom input, then it is expected to ignore the influence of any
node connection that it has been assigned.

 <max name="max1" type="color3">
 <input name="in1" type="color3" nodename="n2"/>
 <input name="in2" type="color3" value="0.001, 0.001, 0.001"/>
 <input name="in3" type="color3" nodename="n4" target="myshop"/>
 </max>

In the above example, target "myshop" has an implementation of the "max" operator that accepts a third
input, which has been connected to the output of node "n4".

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 21

Nodes and Node Graphs

A NodeGraph element defines an arbitrary acyclic data-processing graph applied to one or more source
nodes in order to produce spatially-varying data streams for rendering or further processing. A
MaterialX document can contain multiple nodegraph elements, each defining one or more output names.
NodeGraphs can be shared by several different shaders or even different inputs to the same shader
because each material specifies which nodegraph element and output connect to each of various shader
inputs, and perhaps specifying different values for public node parameters.

A nodegraph may also be used to define a custom pattern or shader node in terms of simpler node
primitives. Details on this usage of nodegraphs can be found in the Custom Nodes and Shader Nodes
sections below.

NodeGraph Definition

A <nodegraph> element consists of at least one node element and at least one <output> element
contained within a <nodegraph> element:

 <nodegraph name="graphname" [nodedef="nodedefname" [target="target"]]>
 ...node element(s)...
 ...output element(s)...
 </nodegraph>

The nodedef and target attributes are only applicable when the nodegraph is used as the definition
of a custom node. Please see the Custom Nodes section for details.

Individual node elements have the form:

 <nodetype name="nodename" type="datatype">
 <input name="paramname" type="type" [nodename="nodename"] [value="value"]/>
 <parameter name="paramname" type="type" value="value"/>
 ...additional input or parameter elements...
 </nodetype>

where name (string, required) defines the name of the node, which must be unique at least within the
scope of the <nodegraph> it appears in, and type (string, required) specifies the MaterialX type
(typically float, colorN, or vectorN) of the output of that node, and thus the number of channels that the
node operates on.

MaterialX defines a number of standard nodes which all implementations should support as described
(with the possible exception of implementation-dependent capabilities noted with "require" attributes).
One can also define new nodes by declaring their parameter interfaces and providing portable or
target-specific implementations. Please see the Custom Nodes section for notes and implementation
details.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 22

Inputs and Parameters
Node elements contain zero or more <input> and <parameter> elements defining the name, type, and
connecting nodename or value of each node input and parameter. Input elements typically define the
input connections to the nodes (although they can be given a uniform constant value instead), while
Parameter elements exclusively provide uniform values for the source or operator. Parameter and input
elements may additionally be assigned public names, allowing them to be overridden from materials.

A node input must generally be connected to outputs of the same type, but MaterialX allows extraction
of individual members of custom types, and/or the extraction or rearrangement of channels within a
multichannel type.

Individual member values of custom-type node outputs can also be accessed and connected to pattern or
shader node inputs of the member's type by adding a "member" attribute:

 <custnode name="cnode4" type="exampletype"/>
 <multiply name="mult6" type="color3">
 <input name="in1" type="color3" nodename="cnode4" member="compclr"/>
 <input name="in2" type="color3" value="0.6, 0.5, 0.45"/>
 </multiply>

Inputs may also extract and/or reorder ("swizzle") the channels of multi-channel data types upon input to
allow type conversion between float, colorN and vectorN types by adding a "channels" attribute, a string
of characters indicating which channels from the incoming stream to use in each channel of the input, in
order, exactly following the conventions and syntax of the swizzle Channel node:

 <constant name="c4" type="color4">
 <parameter name="value" type="color4" value="0.1, 0.2, 0.3, 0.9"/>
 </constant>
 <constant name="v2" type="vector2">
 <parameter name="value" type="vector2" value="0.4, 0.5"/>
 </constant>
 <add name="add4" type="color4">
 <input name="in1" type="color4" nodename="c4" channels="rrr1"/>
 <input name="in2" type="color4" nodename="v2" channels="xy00"/>
 </add>
 <multiply name="m3" type="vector3">
 <input name="in1" type="vector3" nodename="add4" channels="rgb"/>
 <input name="in2" type="vector3" nodename="cnode4" member="minvec"
 channels="xy0"/>
 </multiply>

The "member" and "channels" attributes are valid in any element that allows a "nodename" attribute. As
seen in the final part of the example, the "member" and "channels" attributes may combined to extract
certain channels of an individual member of a custom type. Implementations that do not directly
support input connections to sub-attributes of streams are expected to insert a swizzle node "behind
the scenes" upon import.

Standard MaterialX nodes have exactly one output, while custom nodes may have any number of
outputs; please see the Custom Nodes section for details.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 23

Output Elements
Output data streams for nodegraphs are defined using <output> elements. An output may be used, for
example, to connect data from a node graph to a shader input, or to declare an expected output for a
custom node or shader implementation.

 <output name="albedo" type="color3" nodename="n9"/>
 <output name="precomp" type="color4" nodename="n13" width="1024" height="512"
 bitdepth="16"/>

Attributes for Output elements:

● name (attribute, string, required): the name of the output
● type (attribute, string, required): the MaterialX type of the output
● nodename (attribute, string, required): the name of a node within the same nodegraph, whose

result value will be output by this port.
● member (attribute, string, optional): if nodename specifies a node outputting a custom type

containing several members, the name of the specific member to output.
● channels (attribute, string, optional): if nodename specifies a node outputting a type with

multiple channels, the subset of channels to extract and output. For example, this could be used
to output just the RGB channels from a color4 stream to an <output>.

● colorspace (attribute, string, optional): the name of the color space for the output image.
Applications that support color space management are expected to perform the required
transformations of output colors into this space.

● width (attribute, integer, optional): the expected width in pixels of the output image.
● height (attribute, integer, optional): the expected height in pixels of the output image.
● bitdepth (attribute, integer, optional): the expected per-channel bit depth of the output image,

which may be used to capture expected color quantization effects. Common values for
bitdepth are 8, 16, 32, and 64. It is up to the application to determine what the internal
representation of any declared bit depth is (e.g. scaling factor, signed or unsigned, etc.).

The colorspace , width , height and bitdepth attributes are intended to be used in applications
which process nodegraphs in 2D space and save or cache outputs as images for efficiency.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 24

Standard Source Nodes

Source nodes use external data and/or procedural functions to form an output; they do not have any
required inputs. Each source node must define its output type.

This section defines the Source Nodes that all MaterialX implementations are expected to support.
Standard Source Nodes are grouped into the following classifications: Texture nodes, Procedural nodes,
Global nodes, Geometric nodes, and Application nodes.

Texture Nodes
Texture nodes are used to read filtered image data from image or texture map files for processing within
a nodegraph.

 <image name="in1" type="color4">
 <parameter name="file" type="filename" value="layer1.tif"/>
 <parameter name="default" type="color4" value="0.5,0.5,0.5,1"/>
 </image>
 <image name="in2" type="color3">
 <parameter name="file" type="filename" value="%albedomap"/>
 <parameter name="default" type="color3" value="0.18,0.18,0.18"/>
 </image>
 <triplanarprojection name="tri4" type="color3">
 <parameter name="filex" type="filename" value="%colorname.X.tif"/>
 <parameter name="filey" type="filename" value="%colorname.Y.tif"/>
 <parameter name="filez" type="filename" value="%colorname.Z.tif"/>
 <parameter name="default" type="color3" value="0.0,0.0,0.0"/>
 </triplanarprojection>

Standard Texture nodes:

● image: samples data from a single image, or from a layer within a multi-layer image. When
used in the context of rendering a geometry, the image is mapped onto the geometry based on
geometry UV coordinates. Parameters and inputs:
○ file (parameter, filename, required): the URI of an image file. The filename can include

one or more substitutions to change the file name (including frame number) that is accessed,
as described in the Image Filename Substitutions section above. [REQ="multilayer" if
multi-layer input file]

○ layer (parameter, string, optional): the name of the layer to extract from a multi-layer input
file. If no value for layer is provided and the input file has multiple layers, then the
"default" layer will be used, or "rgba" if there is no "default" layer. Note: the number of
channels defined by the type of the 
 <image name="img2" type="color3">
 <parameter name="file" type="filename" value="layer2.tif"/>
 </image>
 <image name="img3" type="float">
 <parameter name="file" type="filename" value="mask1.tif"/>
 </image>
 <mix name="n0" type="color3">
 <input name="fg" type="color3" nodename="img1"/>
 <input name="bg" type="color3" nodename="img2"/>
 <input name="mask" type="float" nodename="img3"/>
 </mix>
 <hueshift name="n1" type="color3">
 <input name="in" type="color3" nodename="n0"/>
 <parameter name="amount" type="float" value="0.22"/>
 </hueshift>
 <output name="diffuse" type="color3" nodename="n1"/>
 </nodegraph>
</materialx>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 43

Example 2: Same as above, but replacing the three single-channel input files with a single multi-channel
input file.

<?xml version="1.0" encoding="UTF-8"?>
<materialx require="multilayer">
 <nodegraph name="nodegraph2">
 <image name="img1" type="color3">
 <parameter name="file" type="filename" value="multilayer.tif"/>
 <parameter name="layer" type="string" value="diffuse1"/>
 </image>
 <image name="img2" type="color3">
 <parameter name="file" type="filename" value="multilayer.tif"/>
 <parameter name="layer" type="string" value="diffuse2"/>
 </image>
 <image name="img3" type="float">
 <parameter name="file" type="filename" value="multilayer.tif"/>
 <parameter name="layer" type="string" value="areamask"/>
 </image>
 <mix name="n3" type="color3">
 <input name="fg" type="color3" nodename="img1"/>
 <input name="bg" type="color3" nodename="img2"/>
 <input name="mask" type="float" nodename="img3"/>
 </mix>
 <hueshift name="n4" type="color3">
 <input name="in" type="color3" nodename="n3"/>
 <parameter name="amount" type="float" value="0.22"/>
 </hueshift>
 <output name="diffuse" type="color3" nodename="n4"/>
 </nodegraph>
</materialx>

Note: Because this MaterialX file makes use of the non-required capability "multilayer" to read data
from multilayer input images, a "require" element was added to the opening <materialx> element to

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 44

declare that need.

The above file could be embedded within "multilayer.exr"s metadata field by setting the "file" parameter
of the input nodes to the special token "$CONTAINER":

 <image name="img1" type="color3">
 <parameter name="file" type="filename" value="$CONTAINER"/>
 <parameter name="layer" type="string" value="diffuse1"/>
 </image>
 <image name="img2" type="color3">
 <parameter name="file" type="filename" value="$CONTAINER"/>
 <parameter name="layer" type="string" value="diffuse2"/>
 </image>
 <image name="img3" type="float">
 <parameter name="file" type="filename" value="$CONTAINER"/>
 <parameter name="layer" type="string" value="areamask"/>
 </image>

Example 3: A more complex example, using geometry attributes to define two diffuse albedo colors and
two masks, then color-correcting one albedo less red and more blue and increasing the contrast of the
other, blending the two through an area mask, and adding a small amount of scaled 2D Perlin noise
within a second mask. The contrast amount for the second color map and the size and amplitude for the
overall noise have been given publicnames to expose them as externally-overridable public parameters,
and the graph outputs the area mask layer separately from the composited diffuse albedo color.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 45

<?xml version="1.0" encoding="UTF-8"?>
<materialx require="override">
 <!-- Note: in a real file, there would need to be geominfos here to define
%diff_albedo etc. for each geometry-->
 <nodegraph name="nodegraph3">
 <image name="img1" type="color3">
 <parameter name="file" type="filename" value="%diff_albedo"/>
 </image>
 <image name="img2" type="color3">
 <parameter name="file" type="filename" value="%dirt_albedo"/>
 </image>
 <image name="img3" type="float">
 <parameter name="file" type="filename" value="%areamask"/>
 </image>
 <image name="img4" type="float">
 <parameter name="file" type="filename" value="%noisemask"/>
 </image>
 <constant name="n5" type="color3">
 <parameter name="value" type="color3" value="0.8,1.0,1.3"/>
 </constant>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 46

 <multiply name="n6" type="color3">
 <input name="in1" type="color3" nodename="n5"/>
 <input name="in2" type="color3" nodename="img1"/>
 </multiply>
 <contrast name="n7" type="color3">
 <input name="in" type="color3" nodename="img2"/>
 <parameter name="amount" type="float" value="0.2"
 publicname="dirt_contrast"/>
 <parameter name="pivot" type="float" value="0.5"/>
 </contrast>
 <mix name="n8" type="color3">
 <input name="fg" type="color3" nodename="n7"/>
 <input name="bg" type="color3" nodename="n6"/>
 <input name="mask" type="float" nodename="img3"/>
 </mix>
 <texcoord name="t1" type="vector2"/>
 <scale name="s1" type="vector2">
 <input name="in" type="vector2" nodename="t1"/>
 <parameter name="amount" type="float" value="0.003" publicname="grain/size"/>
 </scale>
 <noise2d name="n9" type="color3">
 <input name="texcoord" type="vector2" nodename="s1"/>
 <parameter name="amplitude" type="color3" value="0.05,0.04,0.06"
 publicname="grain/gain"/>
 </noise2d>
 <inside name="n10" type="color3">
 <input name="mask" type="float" nodename="img4"/>
 <input name="in" type="color3" nodename="n9"/>
 </inside>
 <add name="n11" type="color3">
 <input name="in1" type="color3" nodename="n10"/>
 <input name="in2" type="color3" nodename="n8"/>
 </add>
 <output name="albedo" type="color3" nodename="n11"/>
 <output name="areamask" type="float" nodename="img3"/>
 </nodegraph>
</materialx>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 47

Custom Nodes

Specific applications will commonly support sources and operators that do not map directly to standard
MaterialX nodes. Individual implementations may provide their own custom nodes
[REQ="customnode"], with <nodedef> elements to declare their parameter interfaces, and
<implementation> and/or <nodegraph> elements to define their behaviors.

Custom Node Declaration
Each custom node must be explicitly declared with a <nodedef> element, specifying the expected names
and types of the node’s inputs and output(s).

Attributes for <nodedef> elements:

● name (string, required): a unique name for this <nodedef>
● node (string, required): the name of the custom node being defined
● type (string, required): the type of the output of this custom node, which can be a standard

MaterialX type or a custom type declared through a <typedef>. <Nodedef>s for custom nodes
with multiple outputs should declare type as "multioutput" [REQ="multioutput"].

● nodecategory (string, optional): an optional category name for this node. Standard MaterialX
nodes have nodecategory values matching the titles of the section headings in which they are
described, e.g. "texture", "procedural", "global", "geometric", "application", "math",
"adjustment", "compositing", "conditional", "channel", "convolution", or "organizational".

● defaultinput (string, optional): for nodes with a single output, the name of an <input>
element within the <nodedef>, which will be passed through unmodified by applications that
don’t have an implementation for this node. "multioutput"-type nodedefs may not specify a
defaultinput .

● default (same type as type , optional): for nodes with a single output, a constant value which
will be output by applications that don’t have an implementation for this node, or if a
defaultinput input is specified but that input is not connected. "multioutput"-type nodedefs
may not specify a default .

● require (string, optional): If a custom node's functionality requires access to non-local or
geometric information, it should declare this compatibility requirement as discussed in the
Implementation Compatibility Checking section above by providing a require attribute
value: "convolveops " for nodes requiring access to nearby "texture" information;
"globalops " for nodes requiring access to non-local geometric features, and "geomops " for
nodes requiring access to local geometric features such as surface position, normal, and tangent

Custom nodes are allowed to overload a single node name by providing multiple <nodedef> elements
with different combinations of input and output types. This overloading is permitted both for custom
node names and for the standard MaterialX node set. Within the scope of a single MaterialX document
and its included content, no two <nodedef> elements with an identical combination of input and output
types may be provided for a single node name.

NodeDefs with multiple outputs must additionally define at least two child <output> elements within the
<nodedef> to define the name and types of each output [REQ="multioutput"]; for nodes defined using a
nodegraph, the names and types of the outputs must agree with the <output> elements in the nodegraph.
Single-output <nodedef>s cannot contain an <output> element, as the (nameless) output's type and

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 48

default is set in the <nodedef> itself.

The parameter interface of a custom node is specified as a set of child <parameter> and <input>
elements of the <nodedef>.

Parameter elements are used within a <nodedef> to declare the uniform parameters of a node:

 <parameter name="parametername" type="parametertype" default="value"
 [publicname="publicname"]/>

Attributes for Parameter elements:

● name (string, required): the name of the parameter
● type (string, required): the MaterialX type of the parameter
● default (same type as type , optional): a default value for this parameter, to be used if the

node is invoked without a value or connection defined for this parameter. If a default value is
not defined, then the parameter becomes required, so any invocation of the custom node without
a value or connection for that parameter would be in error.

● publicname (string, optional): a publically-accessible name for this parameter, which is used to
modify the parameter's value from <override> elements in materials

Input elements are used within a <nodedef> to declare the spatially-varying inputs for a node:

 <input name="inputname" type="inputtype" default="value"
 [publicname="publicname"]/>

Attributes for Input elements:

● name (string, required): the name of the shader input
● type (string, required): the MaterialX type of the shader input
● default (same type as type , optional): the default (constant) value of this input, which would

be used if the input remains unconnected and is not otherwise given a value
● publicname (string, optional): a publically-accessible name for this shader input, which can be

used to modify unconnected input values using <override> elements. Publicname attributes are
ignored for shader node inputs that are later bound to nodegraph outputs.

Custom Node Definition
Once the parameter interface of a custom node has been declared through a <nodedef>, MaterialX
provides two methods for precisely defining its functionality: via an <implementation> element that
references source code, or via a <nodegraph> element that composes the required functionality from
existing nodes. Providing a definition for a custom node is optional in MaterialX, but it’s recommended
for maximum clarity and portability.

External function source code may be associated with a specific nodedef using an <implementation>
element, which support the following attributes:

● name (string, required): a unique name for this <implementation>
● nodedef (string, required): the name of the <nodedef> for which this <implementation> applies
● file (filename, optional): the URI of an external file containing the source code for the entry

point of this particular node template. This file may contain source code for other templates of

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 49

the same custom node, and/or for other custom nodes. Ideally, source code for nodes should be
written in a portable language such as OSL, MDL or HLSL, but any language supported by the
target system (if specified) is acceptable.

● function (string, optional): the name of a function within the given external file that contains
the implementation of this node. By default, the name of the function is the value of the
nodedef attribute.

● language (string, optional): when file is specified, the language in which the file code is
written; defaults to "osl".

● target (stringarray, optional): the set of targets to which this implementation is restricted. By
default, an implementation is considered universal, not restricted to any specific targets.

If an <implementation> element specifies a language and/or target with no file , then it is
interpreted purely as documentation that a private definition exists for the given target. Because the
definition in an <implementation> may be restricted to specific targets, a <nodedef> that is defined with
such restrictions may not be available in all applications; for this reason, a <nodedef> that is defined
through an <implementation> is expected to provide a value for default and/or defaultinput when
possible, specifying the expected behavior when no definition for the given node can be found. It
should be noted that specifying a language and/or a target does not necessarily guarantee
compatibility: these are intended to be hints about the particular implementation, and it is up to the host
application to determine which <implementation>, if any, is appropriate for any particular use.

Alternatively, a <nodegraph> element may specify a nodedef attribute (and optionally a target
attribute as well): this indicates both that the nodegraph is a functional definition for that <nodedef>, and
that the <nodedef> declares the set of inputs and parameters that the nodegraph accepts. The type of
the <nodedef> (or the types of its <output>s for "multioutput" nodedefs) and the type(s) of the
nodegraph <output>(s) must agree. The inputs and parameters of the <nodedef> can then be referenced
within <input> and <parameter> elements of nodes within the nodegraph implementation using a
"$name" syntax, e.g. a nodedef parameter named "p1" and a nodedef input "i2" can be referenced as
follows:

 <parameter name="amount" type="float" value="$p1"/>
 <input name="in1" type="color3" value="$p1"/>
 <input name="in2" type="color3" nodename="$i2"/>

Note that an <input> within a node in an implementation nodegraph must reference a <nodedef> input
using "nodename" and not "value".

It is permissible to define multiple nodegraph- and/or file-based implementations for a custom node for
the same combination of input and output types. It is recommended that the specified
language /target combinations be unique, e.g. one implementation in "osl" and another in "glsl",
although this is not required: in the case of multiple applicable implementations for a target, it would be
up to the host application to determine which implementation to actually use.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 50

Example 1: custom nodes defined with external file implementations:

 <nodedef name="mblendcolor3" node="mariBlend" type="color3" defaultinput="in1">
 <input name="in1" type="color3" default="0.0, 0.0, 0.0"/>
 <input name="in2" type="color3" default="1.0, 1.0, 1.0"/>
 <parameter name="ColorA" type="color3" default="0.0, 0.0, 0.0"/>
 <parameter name="ColorB" type="color3" default="0.0, 0.0, 0.0"/>
 </nodedef>
 <nodedef name="mblendfloat" node="mariBlend" type="float" defaultinput="in1">
 <input name="in1" type="float" default="0.0"/>
 <input name="in2" type="float" default="1.0"/>
 <parameter name="ColorA" type="float" default="0.0"/>
 <parameter name="ColorB" type="float" default="0.0"/>
 </nodedef>
 <nodedef name="mnoisecolor3" node="mariCustomNoise" type="color3"
 default="0.5,0.5,0.5">
 <parameter name="ColorA" type="color3" default="0.5, 0.5, 0.5"/>
 <parameter name="Size" type="float" default="1.0"/>
 </nodedef>
 <implementation name="glsl_mblendc3" nodedef="mblendcolor3"
 file="lib/mtlx_funcs.glsl" language="glsl"/>
 <implementation name="glsl_mblendf" nodedef="mblendfloat"
 file="lib/mtlx_funcs.glsl" language="glsl/>
 <implementation name="glsl_mnoisec3" nodedef="mnoisecolor3"
 file="lib/mtlx_funcs.glsl" language="glsl/>
 <implementation name="osl_mblendc3" nodedef="mblendcolor3"
 file="lib/mtlx_funcs.osl" language="osl"/>
 <implementation name="osl_mblendf" nodedef="mblendfloat"
 file="lib/mtlx_funcs.osl" language="osl"/>
 <implementation name="osl_mnoisec3" nodedef="mnoisecolor3"
 file="lib/mtlx_funcs.osl" language="osl"/>
 <implementation name="oslvray_mnoisec3" nodedef="mnoisecolor3"
 file="lib/mtlx_vray_funcs.osl" language="osl" target="vray"/>

The above example defines two templates for a custom operator node called "mariBlend" (one operating
on color3 values, and one operating on floats), and one template for a custom source node called
"mariCustomNoise". Implementations of these functions have been defined in both OSL and GLSL.
There is also in this example an alternate implementation of the "mariCustomNoise" function
specifically for VRay, as if the author had determined that the generic OSL version was not appropriate
for that renderer.

Here is an example of a multioutput node definition and external implementation declaration. Note the
use of <output> elements within the <nodedef> to describe the names, types, and defaults for each
output.

 <nodedef name="dblclr3" node="doublecolor" type="multioutput">
 <input name="in1" type="color3" default="0.0, 0.0, 0.0"/>
 <parameter name="seed" type="float" default="1.0"/>
 <output name="c1" type="color3" default="1.0, 1.0, 1.0"/>
 <output name="c2" type="color3" defaultinput="in1"/>
 </nodedef>
 <implementation name="osl_dc3" nodedef="dblclr3" file="lib/mtlx_funcs.osl"
 language="osl"/>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 51

Example 2: a custom node defined using a nodegraph. The parameters of the nodegraph are defined by
the <nodedef>, and the nodes within the nodegraph reference those parameters in the "value" attributes
of appropriate internal nodes by prefixing the parameter name with a "$". The "fg" input parameter
provides a default value which is used if the "fg" input is left unconnected when the custom node is
used, and the "amount" parameter defines a default value which will be used if invocations of the node
do not explicitly provide a value for "amount". The "bg" input does not provide a default, so it would be
an error to invoke this node without connecting "bg".

 <nodedef name="bladdc4" node="blend_add" type="color4" defaultinput="bg">
 <input name="fg" type="color4" default="0,0,0,0"/>
 <input name="bg" type="color4"/>
 <parameter name="amount" type="float" default="1.0"/>
 </nodedef>
 <nodegraph name="blend_add_ng" nodedef="bladdc4">
 <multiply name="n1" type="color4">
 <input name="in1" type="color4" nodename="$fg"/>
 <input name="in2" type="float" value="$amount"/>
 </multiply>
 <add name="n2" type="color4">
 <input name="in1" type="color4" nodename="n1"/>
 <input name="in2" type="color4" nodename="$bg"/>
 </add>
 <output name="o_result" type="color4" nodename="n2"/>
 </nodegraph>

Custom Node Use
Once defined with a <nodedef>, invoking a custom node within a nodegraph looks very much the same
as using any other standard node: the name of the element is the name of the custom node, and the
MaterialX type of the node's output is required; the custom node's child elements define connections of
inputs to other node outputs as well as any parameter values for the custom node.

 <mariCustomNoise name="custnoise1" type="color3">
 <parameter name="ColorA" type="color3" value="1.0, 1.0, 1.0"/>
 <parameter name="Size" type="float" value="0.5"/>
 </mariCustomNoise>
 <mariBlend name="customblend1" type="color3">
 <input name="in1" type="color3" nodename="custnoise1"/>
 <input name="in2" type="color3" value="0.3, 0.4, 0.66"/>
 <parameter name="ColorA" type="color3" value="1.0, 1.0, 0.9"/>
 <parameter name="ColorB" type="color3" value="0.2, 0.4, 0.6"/>
 </mariBlend>

In this example, some inputs of nodes n2 and n4 have been connected to the two named outputs of the
custom doublecolor operator "dc1": an output attribute is used to specify which output of "dc1" to
connect to in each case.

 <doublecolor name="dc1" type="multioutput">
 <input name="in1" type="color3" nodename="n0"/>
 <parameter name="seed" type="float" value="0.442367"/>
 </doublecolor>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 52

 <contrast name="n2" type="color3">
 <input name="in" type="color3" nodename="dc1" output="c1"/>
 <parameter name="amount" type="float" value="0.14"/>
 </contrast>
 <add name="n4" type="color3">
 <input name="in1" type="color3" nodename="dc1" output="c2"/>
 <input name="in2" type="color3" nodename="n1"/>
 </add>

Shader Nodes

Custom nodes that output data types with a "shader" semantic are referred to in MaterialX as "Shader
Nodes". Shaders, along with their inputs and parameters, are declared using the same <nodedef>,
<implementation> and <nodegraph> elements described above:

 <nodedef name="name" type="shadertype" node="shaderprogramname">
 ...parameter and input declarations...
 </nodedef>

The attributes for <nodedef> elements as they pertain to the declaration of shaders are:

● name (string, required): a user-chosen name for this shader node definition element.
● type (string, optional): the "data type" of the output for this shader, which must have been

defined with a "shader" semantic; see the Custom Data Types section above and discussion
below for details.

● node (string, required): the name of the shader node being defined, which typically matches the
name of an associated shader program such as “blinn_phong”, “disney_principled_2012”,
“volumecloud_vol”. Just as for custom nodes, this shading program may be defined precisely
through an <implementation> or <nodegraph>, or left to the application to locate by name using
any shader definition method that it chooses.

NodeDef elements defining shader nodes do not typically include default or defaultinput
attributes, though they are permitted using the syntax described in the Custom Data Types section if the
output type of the shader node is not a blind data type.

As mentioned in the Custom Data Types section earlier, the standard MaterialX distribution includes
the following standard data types for shaders:

 <typedef name="surfaceshader" semantic="shader" context="surface"/>
 <typedef name="volumeshader" semantic="shader" context="volume"/>
 <typedef name="displacementshader" semantic="shader" context="displacement"/>
 <typedef name="lightshader" semantic="shader" context="light"/>

These types all declare that they have "shader" semantic, but define different contexts in which a
rendering target should interpret the output of the shader node. For a shading language based on
deferred lighting computations (e.g. OSL), a shader-semantic data type is equivalent to a radiance
closure. For a shading language based on in-line lighting computations (e.g. GLSL), a shader-semantic
data type is equivalent to the final output values of the shader.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 53

It is allowable for applications to define additional types for shader nodes; in particular, one could define
a custom type with explicitly-defined members to represent the output AOVs for a class of shader nodes:

 <typedef name="studio_aovs" semantic="shader" context="surface">
 <member name="rgba" type="color3"/>
 <member name="diffuse" type="color3"/>
 <member name="specular" type="color3"/>
 <member name="indirect" type="color3"/>
 <member name="opacity" type="float"/>
 <member name="Pndc" type="vector3"/>
 </typedef>

and then use this type when declaring surface shader nodes:

 <nodedef name="ilm_unifieddef" type="studio_aovs" node="unified_srf">
 <input name="diffc" type="color3" default="0.18,0.18,0.18"/>
 <parameter name="spec1roughness" type="float" default="0.3"/>
 ...
 </nodedef>

It should be noted that the primary benefit of declaring and using specific types for shader nodes would
be to differentiate which shader nodes' outputs can be connected into other nodes' inputs (e.g. the types
match) for applications such as post-shading layering and blending operations. It should also be noted
that using non-blind data types for shaders with specific members greatly limits portability of graphs to
other systems, so their use should be restricted to situations which require them; MaterialX materials and
looks do not require knowledge of the exact contents of shader output and use of the standard
"surfaceshader" etc. types should be sufficient and is encouraged.

Declarations of shader node source implementations are also accomplished using <implementation>
elements for external source file declarations and nodedef attributes within <nodegraph> elements for
nodegraph-based definitions [REQ="shadergraphdef" for nodegraph-based shader node
implementations].

As with non-shader custom nodes, Parameter elements are used within a <nodedef> to declare the
uniform parameters of a shader node, and Input elements are used within a <nodedef> to declare the
spatially-varying input ports for a shader node. When a shader node is instantiated in a <material>, its
parameters may be bound to new uniform values or left at their declared default values, and its input
ports may be connected to the spatially-varying output ports of nodegraphs [REQ="matnodegraph"] or
bound to new (uniform) values, or left at their declared default (uniform) values.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 54

Materials

Material Elements

Material elements are used to define instantiations of one or more of shader nodes of different types, and
associate specific parameter values, connection bindings from nodegraph outputs to shader node inputs,
and public parameter override values with them.

A <material> element contains one or more <shaderref> elements and/or a <materialinherit>
element, which define what shaders a material references directly and what material (if any) it inherits
from, respectively; there must be at least one shaderref and/or materialinherit defined. Material
elements can also dynamically bind values and nodegraph outputs to shader parameters and inputs, and
declare override values for public parameters in referenced shader or pattern nodes connected to inputs
of a referenced shader.

 <material name="materialname">
 ...optional <materialinherit> element...
 ...optional <materialvar> elements...
 ...optional <shaderref> elements...
 ...optional <bindparam> and <bindinput> elements...
 ...optional <override> declarations...
 </material>

Attributes for <material> elements:

● name (string, required): the name of the material.

<material> elements also support other attributes such as xpos , ypos and uicolor as described in the
Standard UI Attributes section above.

MaterialInherit Elements
Materials can inherit the shader references, bindings and overrides from another material by including a
<materialinherit> element. The material can then specify additional shaders, bindings and/or overrides
that will be applied on top of or in place of whatever came from the source material. For maximum
compatibility, it is recommended that materials that inherit from other materials only include bindings
and parameter overrides and not add or change shaders.

 <material name="materialname">
 <materialinherit name="materialtoinheritfrom">
 ...
 </material>

Attributes for <materialinherit> elements:

● name (string, required): the name of the material element to inherit from.

MaterialVar Elements
MaterialVar elements are used within a <material> or more commonly, a <look> to define the value of a

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 55

typed variable that can be substituted into the filename of 
 <constant name="rust_specc" type="color3">
 <parameter name="value" type="color3" value="0.043, 0.043, 0.043"/>
 </constant>
 <constant name="rust_roughf" type="float">
 <parameter name="value" type="float" value="0.5"/>
 </constant>
 <constant name="paint_diffc" type="color3">
 <parameter name="value" type="color3" value="0.447, 0.447, 0.447"/>
 </constant>
 <constant name="paint_specc" type="color3">
 <parameter name="value" type="color3" value="0.144, 0.144, 0.144"/>
 </constant>
 <constant name="paint_roughf" type="float">
 <parameter name="value" type="float" value="0.137"/>
 </constant>
 <image name="mask_rust" type="float">
 <parameter name="file" type="filename" value="mask_rust.tif"/>
 </image>
 <image name="mask_paint" type="float">
 <parameter name="file" type="filename" value="mask_paint.tif"/>
 </image>
 <mix name="mix_diff1" type="color3">
 <input name="fg" type="color3" nodename="rust_diffc"/>
 <input name="bg" type="color3" nodename="steel_diffc"/>
 <input name="mask" type="float" nodename="mask_rust"/>
 </mix>
 <mix name="mix_diff2" type="color3">
 <input name="fg" type="color3" nodename="paint_diffc"/>
 <input name="bg" type="color3" nodename="mix_diff1"/>
 <input name="mask" type="float" nodename="mask_paint"/>
 </mix>
 <output name="o_diffcolor" type="color3" nodename="mix_diff2"/>
 <mix name="mix_spec1" type="color3">
 <input name="fg" type="color3" nodename="rust_specc"/>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 60

 <input name="bg" type="color3" nodename="steel_specc"/>
 <input name="mask" type="float" nodename="mask_rust"/>
 </mix>
 <mix name="mix_spec2" type="color3">
 <input name="fg" type="color3" nodename="paint_specc"/>
 <input name="bg" type="color3" nodename="mix_spec1"/>
 <input name="mask" type="float" nodename="mask_paint"/>
 </mix>
 <output name="o_speccolor" type="color3" nodename="mix_spec2"/>
 <mix name="mix_rough1" type="float">
 <input name="fg" type="float" nodename="rust_roughf"/>
 <input name="bg" type="float" nodename="steel_roughf"/>
 <input name="mask" type="float" nodename="mask_rust"/>
 </mix>
 <mix name="mix_rough2" type="float">
 <input name="fg" type="float" nodename="paint_roughf"/>
 <input name="bg" type="float" nodename="mix_rough1"/>
 <input name="mask" type="float" nodename="mask_paint"/>
 </mix>
 <output name="o_roughness" type="float" nodename="mix_rough2"/>
 </nodegraph>

 <nodedef name="osl_basicsrfdef" type="surfaceshader" node="basic_surface">
 <input name="albedo" type="color3" default="0.15,0.15,0.15"/>
 <input name="speccolor" type="color3" default="1,1,1"/>
 <input name="roughness" type="float" default="0.3"/>
 <parameter name="fresnel" type="float" default="0.25"/>
 </nodedef>
 <implementation name="osl_basicsrfimpl" nodedef="osl_basicsrfdef"/>

 <nodedef name="rmanris_basicsrfdef" type="surfaceshader node="basic_srf">
 <input name="diff_albedo" type="color3" default="0.18,0.18,0.18"/>
 <input name="spec_color" type="color3" default="1,1,1"/>
 <input name="roughness" type="float" default="0.3"/>
 </nodedef>
 <implementation name="rmanris_basicsrfimpl" nodedef="rmanris_basicsrfdef"
 target="rmanris"/>

 <material name="blendedmtl">
 <shaderref name="basic_surface">
 <bindinput name="albedo" type="color3" nodegraph="shaderparams"
 output="o_diffcolor"/>
 <bindinput name="speccolor" type="color3" nodegraph="shaderparams"
 output="o_speccolor"/>
 <bindinput name="roughness" type="float" nodegraph="shaderparams"
 output="o_roughness"/>
 </shaderref>
 <shaderref name="basic_srf">
 <bindinput name="diff_albedo" type="color3" nodegraph="shaderparams"
 output="o_diffcolor"/>
 <bindinput name="spec_color" type="color3" nodegraph="shaderparams"
 output="o_speccolor"/>
 <bindinput name="roughness" type="float" nodegraph="shaderparams"
 output="o_roughness"/>
 </shaderref>
 </material>
MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 61

</materialx>

Example 3: A material using post-shader compositing to blend the outputs of two surface shaders. A
nodegraph containing two shader-semantic nodes and a blending operation is defined, then turned into a
single shader which is then referenced by a material. It is presumed that the implementation has
provided a variant of the <mix> node which supports inputs and an output of type "surfaceshader".

<materialx require="shadernode">
 <-- Assume "shaderprm_ng.mtlx" defines nodegraph "shaderparams", with outputs--/>
 <-- "o_diffcolor1", "o_diffcolor2", "o_speccolor1" and "o_speccolor2". --/>
 <xi:include href="shaderprm_ng.mtlx"/>
 <--Define external "alSurface" shader--/>
 <nodedef name="alSurfaceDef" type="surfaceshader" node="alSurface">
 <input name="DiffuseColor" type="color3" default="0.2,0.2,0.2"/>
 <input name="Specular1Color" type="color3" default="1,1,1"/>
 <parameter name="Specular1Roughness" type="float" default="0.3"/>
 </nodedef>

 <nodedef name="twolayersrfdef" type="surfaceshader" node="twoLayerSurface">
 <input name="diff1" type="color3" default="0.1,0.1,0.1"/>
 <input name="spec1" type="color3" default="1,1,1"/>
 <parameter name="roughness1" type="float" default="0.5"/>
 <input name="diff2" type="color3" default="0.1,0.1,0.1"/>
 <input name="spec2" type="color3" default="1,1,1"/>
 <parameter name="roughness2" type="float" default="0.5"/>
 <input name="mixamt" type="float" default="0"/>
 </nodedef>
 <nodegraph name="ng_twolayersrf" nodedef="twolayersrfdef">
 <alSurface type="surfaceshader">
 <input name="DiffuseColor" type="color3" nodename="$diff1"/>
 <input name="Specular1Color" type="color3" nodename="$spec1"/>
 <parameter name="Specular1Roughness" type="float" value="$roughness1"/>
 </alSurface>
 <alSurface type="surfaceshader">
 <input name="DiffuseColor" type="color3" nodename="$diff2"/>
 <input name="Specular1Color" type="color3" nodename="$spec2"/>
 <parameter name="Specular1Roughness" type="float" value="$roughness2"/>
 </alSurface>
 <mix name="srfmix" type="surfaceshader">
 <input name="bg" type="surfaceshader" nodename="surface1"/>
 <input name="fg" type="surfaceshader" nodename="surface2"/>
 <input name="mask" type="float" nodename="$mixamt"/>
 </mix>
 <output name="o_out" type="surfaceshader" nodename="srfmix"/>
 </nodegraph>

 <material name="mblended1">
 <shaderref name="twoLayerSurface">
 <bindinput name="diff1" type="color3" nodegraph="shaderparams"
 output="o_diffcolor1"/>
 <bindinput name="spec1" type="color3" nodegraph="shaderparams"
 output="o_speccolor1"/>
 <bindparameter name="roughness1" type="color3" value="0.34"/>
 <bindinput name="diff2" type="color3" nodegraph="shaderparams"

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 62

 output="o_diffcolor2"/>
 <bindinput name="spec2" type="color3" nodegraph="shaderparams"
 output="o_speccolor2"/>
 <bindparameter name="roughness2" type="color3" value="0.6"/>
 <bindinput name="mixamt" type="float" nodegraph="shaderparams"
 output="o_mixamt"/>
 </shaderref>
 </material>
</materialx>

Example 4: A nodegraph-defined surface and post-shade blending shaders with materials:

<materialx require="shadernode,shadergraphdef">
 <nodedef name="dprin_shaderdef" type="surfaceshader" node="disney_principled">
 <input name="diffuse" type="color3" default="0.1,0.1,0.1"/>
 <parameter name="metallic" type="float" default="0"/>
 <--other inputs and parameters here--/>
 </nodedef>
 <nodegraph name="op_dprin_shader" nodedef="dprin_shaderdef">
 <--nodes to define "dprin_shader" here--/>
 <output name="out" type="surfaceshader" nodename="n_dpfinal"/>
 </nodegraph>

 <material name="plastic">
 <shaderref name="disney_principled"/>
 <bindinput name="diffuse" type="color3" nodegraph="op1" output="o_diffc"/>
 <bindparam name="metallic" type="float" value="0.01"/>
 </shaderref>
 </material>
 <material name="plasticAlt">
 <materialinherit name="plastic"/>
 <bindparam name="metallic" shaderref="disney_principled" type="float"
 value="0.13"/>
 </material>

 <nodedef name="surfmixdef" type="surfaceshader" node="surfmix"
 defaultinput="in1">
 <input name="in1" type="surfaceshader"/>
 <input name="in2" type="surfaceshader"/>
 <input name="mixamt" type="float" default="0"/>
 </nodedef>
 <nodegraph name="op_surfmix" nodedef="surfmixdef">
 <--nodes to define "surfmix" here--/>
 <output name="out" type="surfaceshader" nodename="n_shmix"/>
 </nodegraph>

 <--Using it to make a post-shade blending shader--/>
 <nodedef name="blendedsrfdef" type="surfaceshader" node="blended_srf">
 <input name="diff1" type="color3" default="0.1,0.1,0.1"/>
 <input name="diff2" type="color3" default="0.1,0.1,0.1"/>
 <input name="mix" type="float" default="0"/>
 </nodedef>
 <nodegraph name="ng2" nodedef="blendedsrfdef">
 <disney_principled name="srf1" type="surfaceshader">

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 63

 <input name="diffuse" type="color3" nodename="$diff1"/>
 <parameter name="metallic" type="float" value="0.1"/>
 </disney_principled>
 <disney_principled name="srf2" type="surfaceshader">
 <input name="diffuse" type="color3" nodename="$diff2"/>
 <parameter name="metallic" type="float" value="0.9"/>
 </disney_principled>
 <constant name="mixconst" type="float">
 <parameter name="value" type="float" value="0.5"/>
 </constant>
 <blended_srf name="mixshad" type="surfaceshader">
 <input name="in1" type="surfaceshader" nodename="srf1"/>
 <input name="in2" type="surfaceshader" nodename="srf2"/>
 <input name="mixamt" type="float" nodename="mixconst"/>
 </blended_srf>
 <output name="out" type="surfaceshader" nodename="mixshad"/>
 </nodegraph>

 <material name="plasticsteel">
 <shaderref name="blended_srf">
 <bindinput name="diff1" type="color3" value="0.2,0.2,0.21"/>
 <bindinput name="diff2" type="color3" value="0.04,0.05,0.05"/>
 <bindinput name="mix" type="float" value="0.8"/>
 </shaderref>
 </material>
</materialx>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 64

Lights

It is not uncommon for Computer Graphics assets to include lights as part of the asset, such as the
headlights of a car. MaterialX does not define actual "light" objects per se, but it does allow referencing
externally-defined light objects in the same manner as geometry, via a UNIX-like path. MaterialX does
not describe the view or geometry of a light object: there is no notion of position in space, animation,
object/view/aim constraints, etc.: MaterialX presumes that these spatial properties are stored within the
external geometry file or other representation.

Since MaterialX treats lights like any other geometry other than the type of shader assigned to it, lights
can be turned off (muted) in looks by making the light geometry "invisible".

A <light> element defines two attributes in addition to its name: a geom defining the name of one light
object in the external scene, and a material defining the light's shader(s) and parameters.

 <light name="lightname" geom="lightgeom" material="materialname"/>

Attributes for <light> elements:

● name (string, required): the name of the light: this name is what is referenced by <lightassign>
elements within looks, and does not have to match the name of the light object in the external
scene.

● geom (geomname, required): the full pathname for the object in the scene representing the light
(see the Geometry Representation section); geomfile and geomprefix are respected if
defined in the current scope. If a wildcard expression is used to specify the geom , it must
resolve to exactly a single object in the scene.

● material (string, required): the name of the <material> element which defines the shader(s)
and parameters used by the light.

<light> elements also support other attributes such as xpos , ypos and uicolor as described in the
Standard UI Attributes section above.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 65

Collections

Collections are recipes for building a list of geometries, which can be used as a shorthand for assigning a
Material to a (potentially large) number of geometries in a Look. Collections can be built up from lists
of specific geometries, geometries matching defined wildcard expressions, other collections, or any
combination of those.

Collection Definition

A <collection> element consists of one or more collectionadd declarations and zero or more
collectionremove declarations, contained within a <collection> element:

 <collection name="collectionname">
 ...collectionadd/collectionremove declarations...
 </collection>

To ensure greater compatibility between packages, a collection's name cannot be the same as a geometry
name. The collectionadd and collectionremove declarations are processed in the order specified, so it is
syntactically possible to build up the contents of a collection in pieces, add entire hierarchies of
geometry and prune off unwanted "child" geometry, or add wildcard-matched geometry and remove
unwanted specific matched geometries. The contents of a collection can itself be used to define a
portion of another collection.

If an external file is capable of defining collections (e.g. in a geometry Alembic file), those collections
can be referred to by Look assignments or any other place a collection=" name" reference is
allowed.

CollectionAdd Elements
CollectionAdd elements add geometries to a collection. There are two ways to specify geometry names
to add: via a comma-separated list of explicit or wildcard names, or via the name of another collection:

 <collectionadd name="name" geom="geomexpr1[,geomexpr2][,geomexpr3...]"/>
 <collectionadd name="name" collection="collectionname"/>

Attributes for CollectionAdd elements:

● name (string, required): the unique name of the CollectionAdd element
● geom (geomnamearray, optional): the list of geometries and/or wildcard expressions that should

be added to the collection
● collection (string, optional): the name of an external collection that should be added to this

one

Since one can have as many <collectionadd> declarations as desired, it is not necessary to build one
extremely long line to contain all the geometries in one collection.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 66

CollectionRemove Elements
CollectionRemove elements remove specified geometries from a collection. They have the exact same
attributes to remove a comma-separated list of geometry names or wildcard expressions:

 <collectionremove name="name" geom="geomexpr1[,geomexpr2][,geomexpr3...]"/>

Attributes for CollectionRemove elements:

● name (string, required): the unique name of the CollectionRemove element
● geom (geomnamearray, required): the list of geometries and/or wildcard expressions that should

be removed from the collection

Note that <collectionremove> does not support a collection=".." attribute to remove the contents
of one collection from another: this is due to incompatible differences in the way various contemporary
packages process boolean combinations of collections.

Collections resolve to an exact list of geometries for look assignment purposes: host applications must
do whatever is needed to ensure that their internal mechanisms apply the assignments to only and
exactly the geometries resolved within the collections and not explicitly apply the assignment to any
child geometries.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 67

Geometry Info Elements

Geometry Info ("geominfo") elements are used to define sets of named attributes with constant values,
and to assign them to specific external geometries. GeomInfo elements can apply multiple attribute
values to multiple pieces of geometry or to collections of geometry. It is acceptable for several
geominfo elements to reference the same geometry or the same attribute, as long as no two geominfo
elements try to assign values of the same geometry attribute to the same geometry.

The most common use for geominfo elements is to define the filenames (or portions of filenames) of
texture map images mapped onto the geometry. Typically, there are several types of textures such as
color, roughness, bump, opacity, etc. associated with each geometry: each would be a separate
<geomattr> within the <geominfo>. Each of those images could contain texture data for multiple
geometries, which would either be listed in the geom attribute of the <geominfo> element, or be
assembled into a collection and the name of that collection would be specified in the collection
attribute.

GeomInfo Definition

A <geominfo> element contains one or more geometry attribute definitions, and associates those
geometry attribute values with all geometries listed in the geom or collection parameter:

 <geominfo name="name" [geom="geomexpr1,geomexpr2,geomexpr3"] [collection="coll"]>
 ...geometry attribute definitions...
 </geominfo>

Attributes for GeomInfo elements:

● name (string, required): the unique name of the GeomInfo element
● geom (geomnamearray, optional): the list of geometries and/or wildcard expressions that the

GeomInfo is to apply to
● collection (string, optional): the name of a defined collection of geometries (see the Look

and Collection Elements section)

GeomAttr Elements
GeomAttr elements define constant values directly associated with specific geometries. This could be
application-specific metadata, attributes passed from a lighting package to a renderer, or values that can
be substituted into filenames within image nodes (please see the Image Filename Substitutions section
above for details on this last use case):

 <geomattr name=”attrname” type="attrtype" value="value"/>

The "value" can be any MaterialX type, but if a geomattr is used in an image filename substitution, it
will be cast to a string before being substituted into the image filename, so string and integer values are
recommended.

GeomAttr elements have the following attributes:

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 68

● name (string, required): the name of the geometry attribute to define.
● type (string, required): the geometry attribute's type.
● value (any MaterialX type, optional): the value to assign to that attribute for this geometry.

For example, one could specify a texture ID value associated with a geometry:

 <geominfo name="gi1" geom="/a/g1">
 <geomattr name="txtid" type="integer" value="1001"/>
 </geominfo>

and then reference that geomattr string in an image filename:

 <nodegraph name="ng1">
 <image name="cc1" type="color3">
 <parameter name="file" type="filename"
 value="txt/color/asset.color.%txtid.tif"/>
 </image>
 ...
 </nodegraph>

The %txtid in the file name would be replaced by whatever value the txtid GeomAttr had for each
geometry.

One could also define the entire image name and apply to it several geometries at once, e.g.:

 <geominfo name="gi2" geom="/a/g2,/a/g3,/a/g4">
 <geomattr name="imagename" type="string" value="images/color.rustleftside.tif"/>
 </geominfo>
 <nodegraph name="ng2">
 <image name="cc1" type="color3">
 <parameter name="file" type="filename" value="%imagename"/>
 </image>
 ...
 </nodegraph>

or use multiple GeomAttrs to define different portions of various image names, e.g.:

 <geominfo name="gi3" geom="/a/g5,/a/g7">
 <geomattr name="txtid" type="integer" value="1009"/>
 <geomattr name="clrname" type="string" value="color"/>
 <geomattr name="specname" type="string" value="specular"/>
 </geominfo>
 <geominfo name="gi4" geom="/a/g6,/a/g8,/a/g9">
 <geomattr name="txtid" type="integer" value="1010"/>
 <geomattr name="clrname" type="string" value="color3"/>
 <geomattr name="specname" type="string" value="specalt"/>
 </geominfo>
 <nodegraph name="ng3">
 <image name="cc2" type="color3">
 <parameter name="file" type="filename"
 value="txt/%clrname/asset.%clrname.%txtid.tif"/>
 </image>
 <output name="o_color2" type="color3" value="cc2"/>
 <image name="sc2" type="color3">

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 69

 <parameter name="file" type="filename"
 value="txt/%specname/asset.%specname.%txtid.tif"/>
 </image>
 <output name="o_spec2" type="color3" nodename="sc2"/>
 </nodegraph>

Note: if there is a fileprefix set within the scope of the <geominfo> , the final value of the
GeomAttr will not have the fileprefix prepended/appended, even if it looks like a filename: this is
because fileprefix only affects values of type filename , not string . Rather, the fileprefix (if defined
in the scope of a nodegraph) would be prepended/appended to the value of the "file" parameter in the
<image> node.

GeomAttrDefault Elements
GeomAttrDefault elements define the default value for a specified GeomAttr name; this default value
will be used in a filename string substitution if an explicit geomattr value is not defined for the current
geometry. Since GeomAttrDefault does not apply to any geometry in particular, it must be used outside
of a <geominfo> element.

 <geomattrdefault name="txtid" type="integer" value="1000"/>
 <geomattrdefault name="clrname" type="string" value="color"/>

Reserved GeomAttr Names
Workflows involving textures with implicitly-computed filename tokens based on u,v coordinates (such
as %UDIM and %UVTILE) can be made more efficient by explicitly listing the set of values that these
tokens resolve to for any given geometry. The MaterialX specification reserves two geomattr names for
this purpose, udimset and uvtileset , each of which is a stringarray containing a comma-separated
list of UDIM or UVTILE tokens:

 <geominfo name="gi4" geom="/a/g1,/a/g2">
 <geomattr name="udimset" type="stringarray" value="1002,1003,1012,1013"/>
 </geominfo>

 <geominfo name="gi5" geom="/a/g4">
 <geomattr name="uvtileset" type="stringarray" value="_2U_1V,_2U_2V"/>
 </geominfo>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 70

Look and Property Elements

Look elements define the assignments of materials and other properties to geometries and geometry
collections. In MaterialX, a number of geometries are associated with each stated material or property
in a look, as opposed to defining the particular material or properties for each geometry.

Property elements define non-material properties that can be assigned to geometries or collections in
Looks. There are several standard MaterialX property types that can be applied regardless of what
renderer is used, as well as a mechanism to define target-specific properties for geometries or
collections.

A MaterialX document can contain multiple property and/or look elements.

Property Definition

A <property> element defines the name, type and value of a non-material property of geometry;
<propertyset> elements are used to group a number of <property>s into a single named object. The
connection between properties or propertysets and specific geometries or collections is done in a <look>
element, so that these properties can be reused across different geometries, and enabled in some looks
but not others. <Property> elements may only be used within <propertyset>s; they may not be used
independently, although a dedicated <propertyassign> may be used within a look to declare a property
name, type, value and assignment all at once.

 <propertyset name="set1">
 <property name="twosided" type="boolean" value="true"/>
 <property name="vistocamera" type="boolean" value="false"/>
 <property name="trace/bias" target="rmanreyes" type="float" value="0.002"/>
 </propertyset>

The following properties are considered standard in MaterialX, and should be respected on all platforms
that support these concepts:

Property Type Default Value
 twosided boolean false
 invisible boolean false
 vistocamera boolean true
 vistoshadow boolean true
 vistosecondary boolean true

When the "invisible" property is set to "true", it takes precedence over any "visto..." properties, and
geometry assigned to the "invisible" propertyset will not be visible to camera, shadows or secondary
rays. The "invisible" property can be used to turn off geometry not needed in certain variations of an
asset, e.g. different costume pieces or damage shapes. The "invisible" property can also be assigned to a

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 71

light "geometry" to mute/disable the light for that look.

In the example above, the "trace/bias" property is target-specific, and has been restricted to the context
of Renderman Reyes by setting its target attribute to “rmanreyes”.

Look Definition

A <look> element contains one or more material, light illumination, light shadowing and/or propertyset
assignment declarations, optionally preceded by a <lookinherit> element:

 <look name="lookname">
 ...optional <lookinherit> element...
 ...materialassign, lightassign, property/propertysetassign declarations...
 ...optional <materialvar> elements...
 </look>

Looks can inherit the assignments from another look by including a <lookinherit> element. The look
can then specify additional assignments that will apply on top of/in place of whatever came from the
source look. This is useful for defining a base look and then one or more "offshoot" or "variation"
looks. It is permissible for an inherited-from look to itself inherit from another look, but a look can
inherit from only one parent look.

 <look name="lookname">
 <lookinherit name="looktoinheritfrom">
 ...materialassign, lightassign, property/propertysetassign declarations...
 ...optional <materialvar> elements...
 </look>

<look> elements also support other attributes such as xpos , ypos and uicolor as described in the
Standard UI Attributes section above.

Look Assignment Elements

Look assignment elements are used to assign materials, light illumination and shadowing, and properties
to specific geometries within a look. Each of the following assignment declaration element types can
include any combination of geom / shadowgeom attributes (of type "geomnamearray") and/or
collection / shadowcollection attributes. Looks can only contain a single assignment
declaration for any particular material/light/property/propertyset name.

MaterialAssign Elements
MaterialAssign elements are used within a <look> to connect a specified material, asset light, property
value or propertyset to one or more geometries or collections.

 <materialassign name="materialname" [geom="geomexpr1[,geomexpr2...]"]
 [collection="collectionname"] [exclusive=true|false]/>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 72

Material assignments are generally assumed to be mutually-exclusive, that is, any individual geometry is
assigned to only one material. Therefore, assign declarations should be processed in the order they
appear in the file, and if any geometry appears in multiple <materialassign>s, the last <materialassign>
wins. However, some applications allow multiple materials to be assigned to the same geometry as long
as the shader node types don't overlap. If the exclusive attribute is set to false (default is true), then
earlier material assigns will still take effect for all shader node types not defined in the materials of later
assigns: for each shader node type, the shader within the last assigned material referencing a matching
shader node type wins. If a particular application does not support multiple material assignments to the
same geometry, the value of exclusive is ignored and only the last full material and its shaders are
assigned to the geometry, and the parser should issue a warning. [REQ="multiassign" in order to set
exclusive=false]

LightAssign Elements
LightAssign elements are used within a <look> to connect a specified asset light to one or more
geometries or collections.

 <lightassign name="lightname" [geom="geomexpr1[,geomexpr2...]"]
 [collection="collectionname"] [shadowgeom="geomexpr1[,geomexpr2...]"]
 [shadowcollection="collectionname"]/>

Lighting assignments indicate what geometry is illuminated by a specified light (geom or
collection), and what geometry will occlude illumination/cast shadows from the specified light
(shadowgeom or shadowcollection). Illumination and shadow assignments are made referencing
the MaterialX name given to the light, not the name of the light "geometry" in the external scene. Lights
must explicitly be assigned to some geometry in order to "turn the light on"- they are not considered on
by default. Assigning an invisible property to light geometry will effectively mute the light so it
will not illuminate anything; any <lightassign> for that light will be ignored. This can be useful in
inherited look situations, where a master look defines all the asset lights, and individual looks inheriting
it can turn certain lights off when needed.

PropertyAssign Elements
PropertyAssign and PropertySetAssign elements are used within a <look> to connect a specified
property value or propertyset to one or more geometries or collections.

 <propertyassign name="propertyname" type="type" value="value" [target="target"]
 [geom="geomexpr1[,geomexpr2...]"] [collection="collectionname"]/>
 <propertysetassign name="propertysetname" [geom="geomexpr1[,geomexpr2...]"]
 [collection="collectionname"]/>

Multiple property/propertyset assignments can be made to the same geometry or collection, as long as
there is no conflicting assignment made. If there are any conflicting assignments, it is up to the host
application to determine how such conflicts are to be resolved, but host applications should apply
property assignments in the order they are listed in the look, so it should generally be safe to assume that
if two property/propertyset assignments set different values for the same property to the same geometry,
the later assignment will win.

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 73

Look Examples

<?xml version="1.0" encoding="UTF-8"?>
<materialx>
 <!-- <nodedef> and <material> elements to define Mplastic1,2 and Mmetal1,2 here -->
 <collection name="c_plastic">
 <collectionadd name="ca1" geom="/a/g1,/a/g2,/a/g5"/>
 </collection>
 <collection name="c_metal">
 <collectionadd name="ca2" geom="/a/g3,/a/g4"/>
 </collection>
 <collection name="c_headlampAssembly">
 <collectionadd name="ca3" geom="/a/lamp1/housing*Mesh"/>
 </collection>
 <collection name="c_setgeom">
 <collectionadd name="ca4" geom="/b//*"/>
 </collection>
 <nodedef name="s_headlight1" type="lightshader" node="disk_lgt">
 <parameter name="emissionmap" type="filename" value="txt/fresnellamp.1.tif"/>
 <parameter name="gain" type="float" value="2000.0"/>
 </nodedef>
 <material name="mheadlight">
 <shaderref name="disk_lgt"/>
 </material>
 <light name="headlgt1" geom="/a/b/headlight" material="mheadlight"/>
 <propertyset name="standard">
 <property name="displacementbound/sphere" target="rmanreyes" type="float"
 value="0.05"/>
 <property name="trace/bias" target="rmanreyes" type="float" value="0.002"/>
 </propertyset>
 <look name="lookA">
 <materialassign name="Mplastic1" collection="c_plastic"
 <materialassign name="Mmetal1" collection="c_metal"
 <lightassign name="headlgt1" geom="//*" shadowcollection="c_headlampAssembly"/>
 <propertysetassign name="standard" geom="//*"/>
 </look>
 <look name="lookB">
 <materialassign name="Mplastic2" collection="c_plastic"
 <materialassign name="Mmetal2" collection="c_metal"
 <propertysetassign name="standard" geom="//*"/>
 <propertyassign name="vistocamera" type="boolean" value="false"
 collection="c_setgeom"/>
 </look>
</materialx>

MaterialX Specification v1.34 TM & © 2017 Lucasfilm Ltd. All rights reserved. p. 74

