
Differences Between MaterialX Specification v1.37 and v1.37REV2
Updated December 23, 2019

Units
MaterialX now supports the declaration of units and unit types for parameters, inputs and
geometric properties. For example, a nodedef could declare that a certain parameter is a
"distance" unittype, and invocations of that node could declare that a value for that parameter is
expressed in e.g. "centimeters" or "inches". Combined with an application's declaration of a
preferred working "scene unit" for various unit types, this makes it possible for MaterialX to
automatically convert values from one unit to another.

The <tiledimage> supplemental node now has "realworldimagesize" and "realworldtilesize"
parameters which can be used to indicate the real-world size of a tiled texture sample and apply
the texture into a specified real-world UV unit tile size.

More Robust Node Signature Variants
Previously, there were a number of nodes that had different combinations of allowable input or
parameter names, such as the <rotate> node with an "axis" parameter only applicable to the
vector3 variant, or one set of variants of the <transformX> nodes using "fromspace"/"tospace" and
others using "mat". This turned out to make it difficult or even impossible to resolve exactly
which nodedef signature was to be used in some cases, especially when some inputs were
unconnected and intended to use their default values. In 1.37REV2 we have now split all of these
nodes into separate node types, so that all variants of a node now have exactly the same set of
input and parameter names (only the types of those inputs/parameters vary from one <nodedef> to
another). This makes the determination of which nodedef to use much more robust, and also
makes MaterialX-based node creation UIs more straightforward.

The following node types are affected:

● <invert> for matrices is now called <invertmatrix>
● <transformpoint>, <transformvector>, <transformnormal> now only have

fromspace/tospace variants; to transform a vector by a matrix, use the new
<transformmatrix> node

● <rotate> is now split into separate <rotate2d> and <rotate3d> nodes
● The <combine> node has been replaced with separate <combine2>, <combine3> and

<combine4> nodes, reflecting the number of input connections.
● The <separate> supplemental node has been replaced with separate <separate2>,

<separate3> and <separate4> nodes, reflecting the number of outputs.

New Comparison Nodes
The <compare> node is now replaced by new <ifgreater>, <ifgreatereq> and <ifequal> nodes,
providing a complete set of value comparison operations.

Additional Changes in 1.37REV2​:

● The reserved "none" type has been removed, as it is no longer needed with explicit node
<output> declarations. Nodes are expected to define at least one output.

● Because it has no outputs, <backdrop> is now a separate element type rather than being a
"node".

● The <dot> node is now considered a trivial "math" node rather than "organizational".
● New uisoftmin/uisoftmax and uistep attributes have been added for nodedef parameters

and inputs.

Differences Between MaterialX Specification v1.36 and v1.37

New Physically-Based Shading Nodes
In support of the incorporation of ShaderX into MaterialX, the following new standard nodes have
been added into a new PBR library:

● PBR Data Types: ​BSDF​, ​EDF​, ​VDF
● BSDF nodes: ​diffuse_brdf​, ​diffuse_btdf​, ​burley_diffuse_brdf​, ​dielectric_brdf​,

dielectric_btdf​, ​conductor_brdf​, ​generalized_schlick_brdf​, ​subsurface_brdf​,
sheen_brdf​, ​thin_film_brdf

● EDF nodes: ​uniform_edf​, ​conical_edf​, ​measured_edf
● VDF nodes: ​absorbtion_vdf​, ​anisotropic_vdf
● Shader construction nodes: ​surface​, ​thin_surface​, ​volume​, ​light​, ​displacement
● Shader utility nodes: ​backfacing​, ​roughness_anisotropy​, ​roughness_dual​,

glossiness_anisotropy​, ​blackbody​, ​complex_ior​, ​artistic_ior​, ​fresnel
Additionally:

● The <mix> and <add> operators have been extended to support mixing or adding of two
BSDFs, EDFs or VDFs, and the <multiply> node has been extended to support scaling a
BSDF, EDF or VDF by a float or color3.

The Physically-Based Shading Operators and some example PBR shaders built from these nodes
are described in a new ​MaterialX Physically-Based Shading Nodes​ document on materialx.org.

Other New Operator Nodes
The following new standard operator nodes have been added:

● Procedural nodes: ​worleynoise2d​, ​worleynoise3d
● Math nodes: ​place2d​, ​normalmap​, ​transformmatrix

Additionally:

● The <convert> operator has been extended to allow conversion between vector2 and
vector3, and between vector3 and vector4, by adding or removing an extra channel with
value "1.0".

Nodedef Type Declaration Moved to Child Output Elements
In previous versions of MaterialX, the output type of nodedefs with a single output was declared
in the <nodedef> itself (and that output was nameless), while the output names and types of
nodedefs with multiple outputs was declared using a number of child <output> elements. This
meant that single and multiple output nodedefs had to be handled differently in applications. In
1.37, we have unified the syntax for nodedef output type declaration to always be done using child
<output> elements: while this does make MaterialX files a bit more complex, it makes application
coding for parsing nodedefs and handling node connections simpler, and it is now possible to
declare a default or defaultinput for each output.

Geometric Properties
Custom geometric properties may be declared using the new <geompropdef> element, and
specific values for these geometric properties may be defined for specific geometries using a
<geomprop> element within a <geominfo>. These can be completely custom properties, or
standard properties defined in a specific space or index. Geometric properties are now
functionally equivalent to USD primvars. With the introduction of <geompropdef> the syntax for
the ​internalgeomprops ​ attribute on <nodedef>s has been simplified to only take a list of
geometric properties, which may be any combination of standard and custom properties. The
value of a custom geometric property may be accessed in a nodegraph using the new
<geompropvalue> node.

GeomAttr/GeomAttrValue/GeomAttrDefault Deprecated
With the addition of custom geometric properties in 1.37 and of tokens in 1.36, the functionality
previously provided by <geomattr>, <geomattrvalue> and <geomattrdefault> is no longer required
as a separate element type, and so those three elements are deprecated in 1.37.

Swizzle-On-Input Reinstated
The "channels" attribute for <input> elements was removed in 1.36 in favor of forcing the use of
explicit type conversion elements such as <extract>, <convert> or <swizzle>. This removal
proved to be burdensome for certain applications which relied on this feature, so it has been
reinstated.

Look Groups
A new <lookgroup> element has been created which allows a number of looks to be grouped
together as a set for organization purposes. This could be used to list the set of looks defined for
an asset, or other uses.

Other Changes
● The definition of "uvtiling" in the <tiledimage> supplemental node was incorrect in 1.36; it

has now been correctly defined as a multiplier on the incoming texture coordinates (The
OSL shader implementation was correct, only the specification was in error).
Additionally, the "uvtiling" and "uvoffset" parameters of <tiledimage> are now defined as
connectable inputs.

● New "uivisible" and "uiadvanced" standard boolean attributes have been added to indicate
if a parameter/input/token within a nodedef or node instantiation should be visible in the
application UI by default or not, and if visible, whether it should only be displayed in an
application-defined "advanced" mode.

● Default values have now been rigorously defined for all inputs and parameters for all
standard nodes. As such, there isn't a compelling reason to declare some as "required" and
some as "optional" (and nothing in the library actually checked this), so this distinction has
been removed from the spec.

● In a number of standard nodes, certain parameters have been changed to be connectable
inputs:

○ <rotate2d> "amount"
○ <contrast> "amount"
○ <hsvadjust> "amount"
○ <remap> "inlow", "inhigh", "outlow", "outhigh"
○ <range> "inlow", "inhigh", "gamma", "outlow", "outhigh"
○ <smoothstep> "min", "max"

● The math nodes <sqrt>, <ln>, <exp>, <sin>, <cos>, <tan>, <asin>, <acos> and <atan2>
are now defined to accept vector​N​ input types as well as float, applying the math operation
channel-by-channel.

● A new "mirror" mode has been defined for u/vaddressmode and frameendaction
parameters, while the "black" mode has been changed to "constant" and now returns the
value of the node's "default" value rather than zero.

● Other minor edits, document reorganizations and clarifications.

